Multi-target DPA attacks: Pushing DPA beyond the limits of a desktop computer

December 2, 2014

Luke Mather, Elisabeth Oswald, Carolyn Whitnall

Cryptography Group, University of Bristol

Scenario:

Scenario:

 Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices

Scenario:

- Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices
- When evaluating devices, it is important to define an optimal adversary

Scenario:

- Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices
- When evaluating devices, it is important to define an optimal adversary
- Traditionally, an optimal adversary considered to use a single attack of minimal data complexity

Scenario:

- Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices
- When evaluating devices, it is important to define an optimal adversary
- Traditionally, an optimal adversary considered to use a single attack of minimal data complexity

However:

Scenario:

- Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices
- When evaluating devices, it is important to define an optimal adversary
- Traditionally, an optimal adversary considered to use a single attack of minimal data complexity

However:

 By taking results of a single attack only, we ignore information leakage in other parts of the data set

Scenario:

- Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices
- When evaluating devices, it is important to define an optimal adversary
- Traditionally, an optimal adversary considered to use a single attack of minimal data complexity

However:

- By taking results of a single attack only, we ignore information leakage in other parts of the data set
- High-performance computing (HPC) is alleviating computational restrictions placed on adversaries

Scenario:

- Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices
- When evaluating devices, it is important to define an optimal adversary
- Traditionally, an optimal adversary considered to use a single attack of minimal data complexity

However:

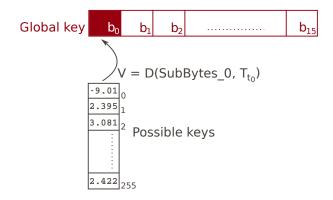
- By taking results of a single attack only, we ignore information leakage in other parts of the data set
- High-performance computing (HPC) is alleviating computational restrictions placed on adversaries

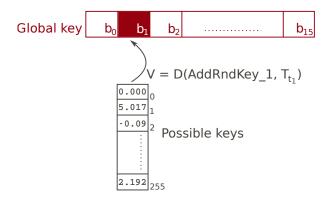
Question:

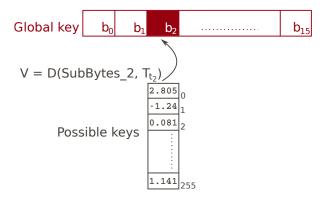
Scenario:

- Side-channel techniques such as Differential Power Analysis (DPA) threaten security of devices
- When evaluating devices, it is important to define an optimal adversary
- Traditionally, an optimal adversary considered to use a single attack of minimal data complexity

However:

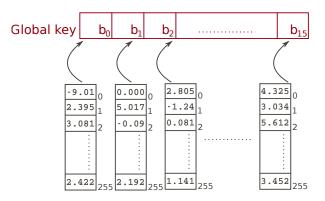

- By taking results of a single attack only, we ignore information leakage in other parts of the data set
- High-performance computing (HPC) is alleviating computational restrictions placed on adversaries

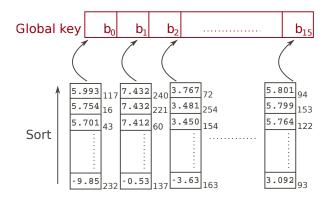

Question:


Can we find practical ways to exploit as much of the leakage as possible? Adversary selects:

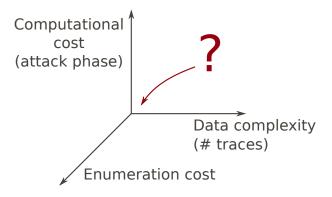

- $T\;\; {\rm 1x}$ set of trace acquistions captured over time
- F A selected target function (e.g for AES: SubBytes, AddRndKey, MixColumns). The choice of target allows the adversary to make predictions about the value of a subkey (e.g first SubBytes operation leaks on first byte of the key)
 - t 1x time point within the set of traces
- *D* A "distinguisher"—statistical tool for guessing subkey values

The attack $D(F, T_t)$ produces a "distinguishing vector" V.

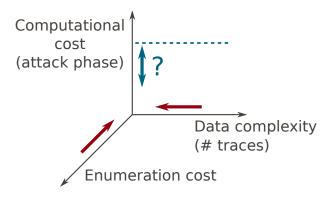


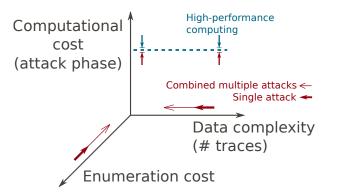

KEY ENUMERATION

- Correct sub-key value not necessarily ranked first in each distinguishing vector
- Use key enumeration (Veyrat-Charvillion SAC '12) to search the candidate space



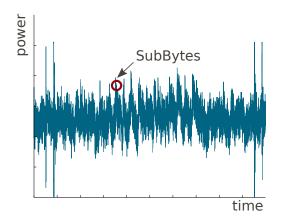
KEY ENUMERATION


- Correct sub-key value not necessarily ranked first in each distinguishing vector
- Use key enumeration (Veyrat-Charvillion SAC '12) to search the candidate space


Traditionally optimise for data complexity. But what is the best adversary?

Traditionally optimise for data complexity. But what is the best adversary?

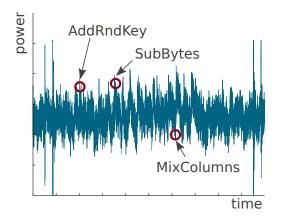
THIS WORK



 Idea: improve by running multiple DPA attacks and combining the key information

MULTIPLE SOURCES OF INFORMATION LEAKAGE

Scenario: find the first key byte of an AES key. Traditional approach: take results of single best attack


$$\blacktriangleright V = D(F, T_t)$$

MULTIPLE SOURCES OF INFORMATION LEAKAGE

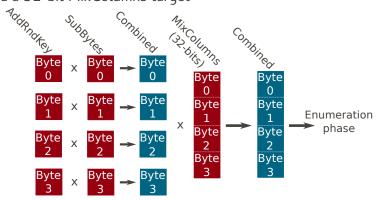
...or combine results calculated using different **target functions**, using best distinguishers and time points?

 $\blacktriangleright V = \mathsf{Combine}(D(\mathbf{F_1}, T_{t_1}), D(\mathbf{F_2}, T_{t_2}), \ldots)$

METHODOLOGY

Need a method for combining results (distinguishing vectors) of multiple attacks:

- ► Ideally: have "probabilities" for subkey candidates
- Distinguishers don't (usually) do this—need a conversion method
- Need to preserve the ranks and the relative distance between the subkey candidates


Solution:

Given two distinguishing vectors:

- 1. Transform to be positive-valued with a baseline of zero
- 2. Normalise the vector scores to sum to 1
- 3. Combine vectors by **pointwise multiplying**

AES CASE STUDY

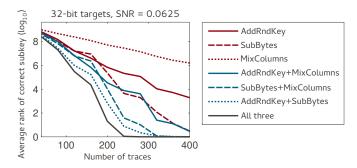
Suppose exploitable information leakage on key bytes 0,..,3 occurs under the 8-bit AddRndKey and SubBytes operations and a 32-bit MixColumns target

Many other combinations possible!

 Aim: compare the best single-target attack against various multiple-target attacks

- Aim: compare the best single-target attack against various multiple-target attacks
- How: compare the sizes of the sets of remaining subkey candidates to test after the attacks

- Aim: compare the best single-target attack against various multiple-target attacks
- How: compare the sizes of the sets of remaining subkey candidates to test after the attacks
- Q: 32-bit targets are time-consuming attacks—can we mitigate this?

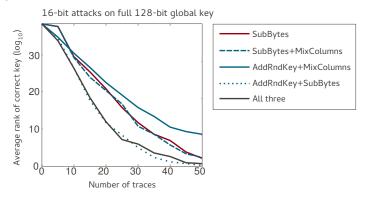

- Aim: compare the best single-target attack against various multiple-target attacks
- How: compare the sizes of the sets of remaining subkey candidates to test after the attacks
- Q: 32-bit targets are time-consuming attacks—can we mitigate this?
- Q: In reality we don't know where leakage occurs—does the combining strategy remain effective here?

SIMULATED EXPERIMENTS

Simulated leakage:

- Different signal-to-noise ratios
- Used correlation distinguisher with Hamming weight model

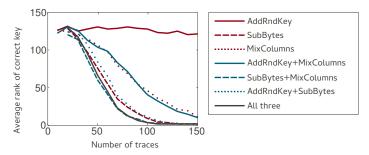
Example results:



Generally: multi-target attacks did a better job

ARM7 EXPERIMENTS

- Strongest adversary: assume the points at which leakage occurs are known
- Unprotected AES: 10,000 traces, 200 repeat experiments


Example results:

ARM7 EXPERIMENTS

- Weaker adversary: assume windows of points in which leakage occurs are known
- Exhaustive search of all combinations of points in the windows

Example results:

► 32-bit attacks on MixColumns are expensive—2³² subkey hypotheses at each time point

- ► 32-bit attacks on MixColumns are expensive—2³² subkey hypotheses at each time point
- Moradi et al. in 2012 attack MixColumns and 60,000 traces using 4 Tesla C2070 GPUs in ~8.25 minutes

- ► 32-bit attacks on MixColumns are expensive—2³² subkey hypotheses at each time point
- Moradi et al. in 2012 attack MixColumns and 60,000 traces using 4 Tesla C2070 GPUs in ~8.25 minutes
- In our setup: can attack 60,000 traces in ~15 seconds (33x faster) using 4 R9 290X GPUs

- 32-bit attacks on MixColumns are expensive—2³² subkey hypotheses at each time point
- Moradi et al. in 2012 attack MixColumns and 60,000 traces using 4 Tesla C2070 GPUs in ~8.25 minutes
- In our setup: can attack 60,000 traces in ~15 seconds (33x faster) using 4 R9 290X GPUs
- Need to start accounting for this level of acceleration!

Summary

Summary

Summary

 Multiple-target attacks make good use of additional information leakage to create (often) stronger attacks

Summary

- Multiple-target attacks make good use of additional information leakage to create (often) stronger attacks
- Concept should extend naturally in presence of countermeasures, and is robust

Summary

- Multiple-target attacks make good use of additional information leakage to create (often) stronger attacks
- Concept should extend naturally in presence of countermeasures, and is robust
- Use of HPC allows for a significant enhancement of an adversary's capabilities

Summary

- Multiple-target attacks make good use of additional information leakage to create (often) stronger attacks
- Concept should extend naturally in presence of countermeasures, and is robust
- Use of HPC allows for a significant enhancement of an adversary's capabilities

Further work

Summary

- Multiple-target attacks make good use of additional information leakage to create (often) stronger attacks
- Concept should extend naturally in presence of countermeasures, and is robust
- Use of HPC allows for a significant enhancement of an adversary's capabilities

Further work

Summary

- Multiple-target attacks make good use of additional information leakage to create (often) stronger attacks
- Concept should extend naturally in presence of countermeasures, and is robust
- Use of HPC allows for a significant enhancement of an adversary's capabilities

Further work

Do enhanced strategies for when we don't know where the leakage is exist?

Summary

- Multiple-target attacks make good use of additional information leakage to create (often) stronger attacks
- Concept should extend naturally in presence of countermeasures, and is robust
- Use of HPC allows for a significant enhancement of an adversary's capabilities

Further work

- Do enhanced strategies for when we don't know where the leakage is exist?
- Further exploration into attacks utilising combination as a building block

Thanks for listening!