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MOTIVATION

Scenario:

I Side-channel techniques such as Differential Power Analysis
(DPA) threaten security of devices

I When evaluating devices, it is important to define an
optimal adversary

I Traditionally, an optimal adversary considered to use a
single attack of minimal data complexity

However:

I By taking results of a single attack only, we ignore
information leakage in other parts of the data set

I High-performance computing (HPC) is alleviating
computational restrictions placed on adversaries

Question:

I Can we find practical ways to exploit as much of the
leakage as possible?
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CLASSICAL DPA

Adversary selects:

T 1x set of trace acquistions captured over time
F A selected target function (e.g for AES: SubBytes,

AddRndKey, MixColumns). The choice of target allows the
adversary to make predictions about the value of a subkey
(e.g first SubBytes operation leaks on first byte of the key)

t 1x time point within the set of traces
D A “distinguisher”—statistical tool for guessing subkey

values

The attack D(F, Tt) produces a “distinguishing vector” V .
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DISTINGUISHING VECTORS

I Contain ‘scores’ for each possible value of the subkey
(portion of the global key) associated with the target
function.

b0 b1 b2 b15Global key

0

V = D(SubBytes_0, Tt )

1

2

255

Possible keys

-9.01

2.395

3.081

2.422

0
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DISTINGUISHING VECTORS

I Contain ‘scores’ for each possible value of the subkey
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DISTINGUISHING VECTORS

I Contain ‘scores’ for each possible value of the subkey
(portion of the global key) associated with the target
function.

b0 b1 b2 b15Global key

0

V = D(SubBytes_15, T )

1

2

255

Possible keys

4.325

3.034

5.612

3.452

t15
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KEY ENUMERATION

I Correct sub-key value not necessarily ranked first in each
distinguishing vector

I Use key enumeration (Veyrat-Charvillion SAC ’12) to
search the candidate space
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KEY ENUMERATION

I Correct sub-key value not necessarily ranked first in each
distinguishing vector

I Use key enumeration (Veyrat-Charvillion SAC ’12) to
search the candidate space

b0 b1 b2 b15Global key

117

16

43

232

5.993

5.754

5.701

-9.85

240

221

60

137

7.432
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-0.53
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-3.63

94
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93

5.801

5.799

5.764

3.092

Sort
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OPTIMALITY

Traditionally optimise for data complexity. But what is the best
adversary?

Data complexity
(# traces)

Computational
cost

(attack phase)

Enumeration cost

?
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THIS WORK

Data complexity
(# traces)

Computational
cost

(attack phase)

Enumeration cost

High-performance 
computing

Single attack
Combined multiple attacks

I Idea: improve by running multiple DPA attacks and
combining the key information
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MULTIPLE SOURCES OF INFORMATION LEAKAGE

Scenario: find the first key byte of an AES key.
Traditional approach: take results of single best attack

I V = D(F, Tt)

time

p
o
w
e
r

SubBytes
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MULTIPLE SOURCES OF INFORMATION LEAKAGE

...or combine results calculated using different target
functions, using best distinguishers and time points?

I V = Combine(D(F1, Tt1), D(F2, Tt2), . . .)

time

p
o
w
e
r

SubBytes

AddRndKey

MixColumns
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METHODOLOGY

Need a method for combining results (distinguishing vectors) of
multiple attacks:

I Ideally: have “probabilities” for subkey candidates
I Distinguishers don’t (usually) do this—need a conversion

method
I Need to preserve the ranks and the relative distance

between the subkey candidates

Solution:
Given two distinguishing vectors:

1. Transform to be positive-valued with a baseline of zero
2. Normalise the vector scores to sum to 1
3. Combine vectors by pointwise multiplying
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AES CASE STUDY

Suppose exploitable information leakage on key bytes 0,..,3
occurs under the 8-bit AddRndKey and SubBytes operations
and a 32-bit MixColumns target
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Many other combinations possible!
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ASSESSING EFFECTIVENESS OF THE METHOD

I Aim: compare the best single-target attack against various
multiple-target attacks

I How: compare the sizes of the sets of remaining subkey
candidates to test after the attacks

I Q: 32-bit targets are time-consuming attacks—can we
mitigate this?

I Q: In reality we don’t know where leakage occurs—does
the combining strategy remain effective here?
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SIMULATED EXPERIMENTS

Simulated leakage:
I Different signal-to-noise ratios
I Used correlation distinguisher with Hamming weight model

Example results:
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Generally: multi-target attacks did a better job
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ARM7 EXPERIMENTS

I Strongest adversary: assume the points at which leakage
occurs are known

I Unprotected AES: 10,000 traces, 200 repeat experiments

Example results:

SubBytes

SubBytes+MixColumns

AddRndKey+MixColumns

AddRndKey+SubBytes

All three

16-bit attacks on full 128-bit global key
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ARM7 EXPERIMENTS

I Weaker adversary: assume windows of points in which
leakage occurs are known

I Exhaustive search of all combinations of points in the
windows

Example results:
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COMPUTATIONAL COST

I 32-bit attacks on MixColumns are expensive—232 subkey
hypotheses at each time point

I Moradi et al. in 2012 attack MixColumns and 60,000
traces using 4 Tesla C2070 GPUs in ~8.25 minutes

I In our setup: can attack 60,000 traces in ~15 seconds
(33x faster) using 4 R9 290X GPUs

I Need to start accounting for this level of acceleration!
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CONCLUSION

Summary

I Multiple-target attacks make good use of additional
information leakage to create (often) stronger attacks

I Concept should extend naturally in presence of
countermeasures, and is robust

I Use of HPC allows for a significant enhancement of an
adversary’s capabilities

Further work

I Do enhanced strategies for when we don’t know where the
leakage is exist?

I Further exploration into attacks utilising combination as a
building block
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CONCLUSION

Thanks for listening!
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